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Abstract 

The complexity of modern industrial plants, along with the major investment in process data 

collections, have increased the attention towards data-driven methods for diagnosis and prognostic, 

as a fundamental tool to implement predictive maintenance schemes. Along the same line, safety-

critical plants need robustness against process faults and deteriorations. The recent concept of 

health aware control is rapidly emerging as a way to include system health information into the 

control actions. This open invited track aims to face current challenges in data-driven diagnosis, 

prognostics and health aware control, discussing methodologies and applications.  

 

Detailed description of the topic 

In a survey conducted by the IFAC industry committee to their members in 2018 to determine the 

current and future impact of several control technologies, intelligent control and fault diagnosis 

placed in the two top positions, with an increment of +30% from “high current impact” to “high 

future impact” responses (Samad, et al., 2020). At the same time of the previous paper publication, 

industry 4.0 national development plans are fostering manufacturing companies to research and 

develop solutions for gathering and analyzing data from the production process towards a “smart” 

manufacturing concept (Ding, et al., 2020), where intelligence is leveraged for both control and 

diagnosis. The new concept of industrial artificial intelligence (industrial AI), combining AI 

technologies with the domain knowledge of standard industrial processes, is rapidly emerging (Lee, 

Davari, Singh, & Pandhare, 2018). Anomaly detection in Cyber-Physical Systems (CPS) through 

watermarking techniques (Ferrari & Teixeira, 2021) is another recent and thriving field of application 

for AI methods. 

AI and, more generally, statistical methods, are key elements for diagnostic algorithms in 

knowledge-based (or data-driven) approaches. While model-based and signal-based methods 

require some prior information, a knowledge-based method is expected to automatically detect and 

recognize the health states of the machines by discovering fault symptoms from process and 

production data, oftentimes in contexts where unlabeled or imbalanced data are present. Even 

though production research is oriented towards a fully autonomous industrial plant (Gamer, 

Hoernicke, Kloepper, Bauer, & Isaksson, 2020) the above limits hinder the applicability of pure-AI 

methods to the diagnosis field, where the physical knowledge of the components inner mechanisms 

is of extreme value for fault diagnosis. In the last years, researchers have worked in parallel 

directions to improve diagnostic methods by relying on process data, examples of which are: (i) 

data-driven design of residual generators (Wang, Ma, Ding, & Li, 2011);  (ii) data-driven fault 

estimation methods (Wan, Keviczky, Verhaegen, & Gustafsson, 2016); (iii) process monitoring 

methods (Yin, Wang, & Gao, 2016); (iv) transfer learning with deep neural networks (Lei, et al., 

2020); (v) fuzzy and neural networks diagnosis approaches (Farsoni, Simani, & Castaldi, 2021) (Yu, 

Fu, Li, & Zhang, 2018).  

On the other hand, prognostics and health management (PHM) focuses on accurate and reliable 

prediction of failure (remaining useful life) at component as well as system level (Mayank Shekhar 

Jha, Dauphin-Tanguy, and Ould-Bouamama 2016). Hybrid approaches, that combine model-based 

and data-driven methods, have garnered significant attention recently and seek efficient ways to 

combine approximate degradation models with various signal estimation techniques (Kanso et al. 



2022). Moreover, the past decade has seen significant explosion in Deep Learning based approaches 

for accurate prognostics either in supervised (Suh et al. 2020) or unsupervised manner (de Beaulieu 

et al. 2022). 

The intersection of diagnosis and control has been vastly considered in the Fault Tolerant Control 

(FTC) topic (Schulte & Gauterin, 2015) (Zhang, Parisini, & Polycarpou, 2004).  New endeavors are 

being made in the domain of FTC and adaptive control to address the issues associated at the cross-

sections component reliability and system performance. To this end, academic as well as industrial 

practitioners are developing novel methods that lie at the intersection of FTC and PHM for synthesis 

of adaptive control. In this context, HAC has recently emerged as the domain wherein control design 

is sought based upon current state of health and failure prognostics (Escobet, Puig, & Nejjari, 2012) 

(Karimi Pour, Theilliol, Puig, & Cembrano, 2021) as well as system reliability-based indicators 

(Salazar Cortés et al. 2016). On the other hand, recent advances in the field of Reinforcement 

Learning (RL) have brought in remarkable breakthroughs in data-driven learning and execution of 

(near) optimal control policies in absence of model knowledge (i.e., using a model free approach). 

In recent years, RL based algorithms have seen a rapid surge in research mainly due to their ability 

to learn optimal control policies offline as well as online based on interactions with the environment, 

in model-based as well as model-free settings leading to their successful application in several 

domains such as robotics, power control, autonomous systems, and health aware control (Mayank 

Shekhar Jha et al. 2019). 

Summarizing, the aim of this invited session is to foster the discussion and collaboration on 

algorithmic methodologies that leverage the production process data for fault diagnosis, estimation, 

condition monitoring, prognostics, and health-aware control. The session includes, but is not limited 

to, the following topics: 

● Data-driven methods for designing residual generators for fault detection and isolation 

● Data-driven methods for fault estimation 

● Data-driven methods for prognostics and remaining useful life (RUL) estimation 

● Health-aware control schemes and applications 

● Transfer learning approaches to fault diagnosis 

● Approaches for the inclusion of qualitative diagnostic information and operator experience 

● Anomaly detection approaches in presence of unlabeled or unsecure data 

● Reinforcement learning based approaches for control design of systems under deterioration.  
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