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Abstract: Contributions on modeling, systems analysis, and control design to complex physical
systems are central to the development of automatic control. As a result, techniques for analysis
and feedback control design for physical representations based on thermodynamics have emerged
in recent years and proved useful in theory and applications alike. In particular, extensions
of structure-modeled systems, for example port-Hamiltonian systems, originally developed
for electro-mechanical systems, to thermodynamic systems generated novel approaches within
the field of automatic control. Moreover, the development of structured-preserving numerical
methods for thermodynamic systems shed a light on the the potential interactions between the
fields of numerical analysis and feedback control systems analysis for distributed parameters
systems. The relation between systems theory, as understood by researchers and practitioners
in automatic control, and thermodynamics is an active scientific area. Classical extensions of
dissipative systems theory to dynamical systems with inputs and outputs under thermodynamic
constraints led, in recent years, to numerous results ranging from investigation son the proper
geometric framework for feedback control design to results on stability analysis, both for
deterministic and stochastic systems where thermodynamics play a prominent role. Applications
where a physically-consistent control theory for thermodynamic systems is needed include
sustainable energy production, chemical reaction networks analysis, and quantum systems. The
objective of the proposed Open Invited Track is to gather contributions from systems and
control practitioners and researchers interested in thermodynamics theory and its extensions
in the context of control systems. Contributions are expected to include modeling, analytic
and geometric methods, as well as feedback control design methodologies for systems where
thermodynamics theory is the fundamental science.

1. HANDLING IFAC TECHNICAL COMMITTEE

Open Invited Track on Thermodynamics Foundations of
Mathematical Systems Theory will be handled by the
IFAC TC 2.3 — Non-Linear Control Systems. The
Open invited track is organized in collaboration with the
following Technical Committees:

• TC 1.1 Modelling, Identification and Signal Process-
ing;

• TC 2.6 Distributed Parameter Systems;
• TC 5.4 Large Scale Complex Systems;
• TC 6.1 Chemical Process Control; and,
• TC 8.4 Biosystems and Bioprocesses.

2. DESCRIPTION OF THE TOPIC

Relations between classical thermodynamics and systems
theory were recognized early, and were presented no-
tably in (Willems, 1972) in the context of dissipative
systems. On the other hand, a geometric framework for
classical thermodynamic systems was presented in (Her-
mann, 1973). Accordingly, contributions in the literature
in the field of Thermodynamics Foundations of Mathemat-
ical Systems Theory can be organized around these two
themes. The recent contribution by (van der Schaft, 2021)
presents an overview of the field.

Classical thermodynamics, dissipation and passivity the-
ory are concepts concerned with the study of internal
stability of systems and how external actions alter funda-



mental properties such as energy, momentum, and entropy
leading to motion, phase transition and self-organization
at the macro-level despite chaotic/random behavior at the
micro level (Haddad et al., 2005; Haddad, 2019). Some the-
oretical developments may draw inspiration for the classi-
cal circuit approaches pioneered by Tellegen (Ydstie and
Alonso, 1997) and Brayton–Moser (Jeltsema and Scher-
pen, 2003). Such lines of thought led to a control theory for
dissipative systems dealing with applications in mechanics
(van der Schaft, 2000). In the same spirit, several research
groups initiated programs to connect irreversible ther-
modynamics with process control. Notable contributions
on the analysis of thermodynamic systems include the
work by Alonso and Ydstie (1996) where thermodynamic
potentials are considered as storage functions for passive
systems analysis. Port-Hamiltonian and Brayton–Moser
formalisms were considered extensively within this context
(Hoang et al., 2011; Ramirez et al., 2013; Ramı́rez et al.,
2016). Recent applications along this line of research, in
the context of chemical processes, include (Favache and
Dochain, 2009; Hoang and Dochain, 2013; Hoang et al.,
2014; Garcia-Sandoval et al., 2016). Stability and passiv-
ity analysis for thermodynamic systems is still an active
area of research, and new process applications, including
observer design (Hoang and Dochain, 2019), multiphase
systems, flowing systems (Mora et al., 2020), stochas-
tic systems (Delvenne and Sandberg, 2015; Rajpurohit
and Haddad, 2017) and distributed parameter systems
(Ramirez et al., 2021).

Borrowing from some of the numerous modern schools
of thermodynamics (Muschik, 2007), one aspect of the
research relevant to IFAC and the automatic control
community is to extend equilibrium thermodynamic to
nonequilibrium thermodynamic formalisms, for example
the GENERIC formalism (Grmela and Öttinger, 1997;

Öttinger and Grmela, 1997) to systems with inputs and
outputs (Badlyan et al., 2018). More generally, repre-
sentations based on bracket formulations (Bloch et al.,
1996) and results on dissipation are important aspects
for modeling and analysis of nonlinear dynamical systems.
Recent contributions relating thermodynamic systems to
Lagrangian formulations (Gay-Balmaz and Yoshimura,
2017a,b) Bracket formulations and representations of ther-
modynamic systems from a variational standpoint are also
relevant to the theory (Merker and Krüger, 2013; Gay-
Balmaz and Yoshimura, 2018).

Elements of thermodynamic theory turns out to be useful
for control design applications of mechanical and process
systems and some of these applications and underlying
geometric theories were reviewed in the IFAC Thermo-
dynamic Foundations of Mathematical Systems Theory
workshop series. Following the contribution by Hermann
(1973) as well as Mrugala (1996) and Balian and Valentin
(2001), control theoretical researchers recognized the cen-
tral role of contact geometry in the study of thermody-
namic systems, notably in (Eberard et al., 2007; Favache
et al., 2010; Ramirez et al., 2017; Gromov and Caines,
2015) and the recent contributions relating control the-
ory to contact geometry by van der Schaft and Maschke
(2018); Maschke and van der Schaft (2019); Bravetti and
Padilla (2019); Schaller et al. (2020).

Relations between thermodynamics and control are also
valuable to many applications relevant to the Automatic
Control community. Thermodynamics of reaction net-
works and networks in general were considered for ex-
ample in the studies provided by Otero-Muras et al.
(2008); Lipták et al. (2015). Another area of applica-
tion, where thermodynamic considerations enable im-
provements through better controller design is the area
of process control design (Hangos et al., 1999; Robinett
III and Wilson, 2006).

The objective of this Open Invited Track is to gather
contributions from systems and control practitioners and
researchers interested in thermodynamic systems and to
explore connections between the abstract systems theory
and our current understanding for how physical systems
behave when they have dynamics constrained by conser-
vation laws and express dissipation that can be related
to maximization of entropy like functions. Sought contri-
butions also include complex and networked systems and
phenomena occupying a varied range of time and spatial
scales. Applications may include, but are not limited to:
Energy efficient chemical processes or processes related
to the production of smart materials that usually take
place in the micro or nano-scale. Biological phenomena
from a cell (biochemical) level through a tissue/organism
and up to the ecological interactions between organisms.
The behavior and control of particulate systems. Emer-
gence of self-organizing behavior in networks of interact-
ing agents where collective dynamics emerge from the
consensus among a large number of ensemble members.
Applications would cover fields such as ecology, robotics
or socio-economy and more generally Cyber-Physical Sys-
tems. Control of large scale networked systems, such as
chemical plants, integrating financial systems and socio-
logical systems and more generally, modeling and control
of irreversible thermodynamic systems.
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