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Abstract

Model reduction methods are established tools in the field of au-
tomatic control. Conversely, automatic control has traditionally been
a driver for the advancement of model reduction methods. We invite
both, contributions that require model reduction as an enabling step
for automatic control, and contributions on the advancement of model
reduction methods for use in systems and control. Contributions that
involve learning or other data-driven approaches, or compare data-
driven approaches to model reduction methods that require physical
models are particularly welcome.

Handling Committee

TC 2.6 Distributed parameter systems
The organizers stress the open invited track is not restricted to applica-

tions to distributed parameter systems. The open invited track is organized
in collaboration with TC 1.1 Modelling, Identification and Signal Processing,
and TC 6.1 Chemical Process Control.

Description of the topic

Due to the ever-growing complexity of technical systems, automatic control
has evolved from a set of techniques for simple control loops to methodologies
for complex systems. This evolution to more and more complex systems is
evident, for example, from the shifts from lumped parameter to distributed
parameter systems, from isolated to networked systems, or from the use of
simple models to multiphysics simulation models.

Whenever working with a complex system, it is an obvious question to
ask if there is a low-dimensional set of particularly suitable (“latent”) coor-
dinates that describe the system sufficiently precisely for the given purpose.
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Apart from a fundamental interest in such a low-dimensional description
or approximation, a reduced order model enables a wider choice of control
methods that would otherwise be unavailable or simply impractical, due to
their scaling in computational complexity, for example.

A broad variety of model reduction methods has successfully been used
in the field of automatic control. Conversely, automatic control has been
a driver for advancements in model reduction methods throughout. In
projection-based model reduction methods (see, e.g., [1, 3]), for example,
the understanding of observable and controllable subspaces has helped to
advance proper orthogonal decomposition to balanced truncation. Simi-
larly, dynamic mode decomposition, originally developed for autonomous
systems, has been extended to systems with inputs, and, arguably, the pop-
ularity of DMD is to a considerable extent due to its successful application
to control in fluid dynamics [8]. More recently, learning-based methods have
challenged established reduction and identification methods. (see, e.g., [4]).
In contrast to projection-based approaches, learning-based methods require
no physical model, a property they have in common with many identification
approaches. Learning-based methods are also often claimed to be superior
because it is natural to incorporate nonlinear mappings into neural net-
works. Finally, recent developments in Koopman operator theory [7] have
created additional impetus for model reduction methods, both in combina-
tion with system theoretic and learning-based approaches (see, e.g., [2, 6]
and [5], respectively).

It is the purpose of this open invite track to collect contributions that
either present methodological advances in model reduction methods tailored
to the field of control, or involve model reduction as a crucial enabling step
for subsequent application of systems and control methods. We particularly
invite contributions that benchmark model reductions based on learning and
neural networks, or that compare such methods to established ones.
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